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I. Overview

Funding for an EPSCoR student in the area of control systems engineering
(masters level) was requested and received as a supplement to an ARPA funded project
"Application of Neural Networks to Seismic Signal Discrimination". This EPSCoR
funded student was directly involved in the application of neural networks and fuzzy logic
as part of the investigation of seismic signal detection and classification. The graduate
advisory committee for the EPSCoR student was comprised of three faculty members
directly involved in the research project.

Two different students filled the EPSCoR funded position. Initially, Mr. Mike
Murphy was selected based on u.wdergraduate achievement and supplemental sponsorship
by Eagle Research Corporation of Charleston, West Virginia Eagle Research provided
Mr Murphy with a two year leave of absence from his employment and agreed to
continue insurance benefits and provide material support in Mr. Murphy's endeavors. Mr.
Murphy completed one semester on campus but chose to return to full time employment
upon learning of his wife's pregnancy towards the end of his first semester. Mr Murphy
lefi under favorable circumstances and continues his studies as a part time student. A
second student, Mr John Martin, began his program of study the same time as Mr
Murphy as a research assistant on the ARPA funded project and assumcd the role of
EPSCoR student the second semester of the program

The goals of the EPSCoR position was for the active participation of the student in
the parent research project working with the principle investigator and co-investigators in
developing mathematical models of neural networks and implementing both neural nets
and fuzzy logic The student was expected to prepare and present a major paper Mr
Murphy prepared a paper entitled "Neural Network Techniques Applied to Seismic Event
Classification" that was presented at the South L-ast Symposium on System Theory,
University of Alabama, March 8, 1993 Mr Martin has prepared and has been notified of
acceptance of a paper at the West Virginia University Mining Symposium to be '.eld July
II. 1994

Mr Martin's role in the parent project was substantial He wa' instrumental in
writing the major parametric transformation codes used in the extensive network testing

schemes His main research involved the application of neural networks to seismic
discrimination using an ARMA signal model This work was used as his required masters
proiect and the final version, as presented and approved by 'A, VIT graduate school, is
attached to this report



main research team covering topics such as programming in ADA, various neural
networks. and presentations on seismology.

3 Research Related Activities

Course attendance and work assignments were expected and assumed in
connection with the students program of study. Other project related activities outside the
normal realm of course study enhanced the EPSCoR stv ients learning experience.

Ani Intel Neural Network Development System was purchased for use by the
student as part of his research program. Use of this system allowed the student to
independently study neural networks from a users point of view as well as conduct
research on training and classification of different seismic parametric data transformations.
The students was required to prepare and present a seminar on Intel System to the
research group Additionaliy, he trained other members of the research group in the use
of the development system for preliminary testing of the main seismic data sets The
conference paper written by Mir Murphy was based on test results obtained form the
development system Mr Martin extensively used the development system in his
preliminary ARMA modeling work The development system was used mainly for quick
experimentation and education The software was not used for final result tabulation due
to speed limitations and copy restrictions

A mathematics software package, Matlab, was used by the research project to pre-
process the raw seismic waveforms and derive different parametric transformations The
EPSCoR student was responsible for taking the rough transformations developed by the
co-investigators and modify the routines into the proper format used for test result
generation These modifications ranged from re-coding the algorithms for more efficient
operation to the addition of data file manipulation routines that allowed auto execution of
data processing routines

The process of selecting a masters research project lead to the exploration of
combinations eo the different parametric transformations Ror presentation to the neural
networks for training and testing A detailed study of the size and amount of overlap
needed in the windowing of the seismic waveforms is presented in the masters proJect
paper attached to this report

4 Travel

Part of the EPSCoR students funding was utilized for travel Ihe following travel
was conducted by the EPSCoR student



I. South East Symposium on System Theory, University of Alabama, March 8-9,
1993, Alabama. The EPSCoR student attended multiple sessions at the conference and a
student paper was presented,

2. Artificial Neural Networks in Engineering, St. Louis, Missouri, November 11,
1993., The EPSCoR student attended an eight hour tutorial session on neural networks as
well as attending three days of paper presentations.

3. Research trip to the Center for Seismic Studies, Arlington, VA. This trip
introduced the EPSCoR student to some of the members of the Centers staff as well as
providing an opportunity to ask several questions to the Centers staff* pertaining to the
seismic database

4. West Virginia University Symposium on Mining, July 11, 1994 The EPSCoR
student will present a paper on research findings at this conference

5 Summary

The EPSCoR funded position provided a rich environment for the student involved
above and beyond that of the normal graduate student at West Virginia Tech The direct
interaction with research faculty, provision of office space, computer equipment, neural
network development tools, and tiavel money allowed the student to fully develop the
skills and knowledge needed to conduct research. The additional resources of the parent
research project made available an extensive research database and additional computer
facilities at the ('enter for Seismic Studies While the research project was not a thesis in
the traditional sense, many of the elements of the project paper re-enforced the skills
necessary to conduct applied research and report the results
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AN ABSTRACT OF A MASTERS PROJECT

SEISMIC EVENT CLASSIFICATION USING NEURAL NETWORKS

WITH ARMA COEFFICIENT MODELING

John R. Martin

Master of Science in Control Systems Engineering

An artificial neural network is incorporated as part of a software simulation system

for the purpose of classifying seismic events from waveform data. Neural network

techniques augment traditional methods of seismic evert classification to enhance

classification flexibility and accuracy. Unprocessed seismograms are not well suited for

presentation to neural networks because of the large number of data points required to

represent a seismic event in the time domain. Parametric representation of the seismic

waveform numerically extracts those features of the wavefbrn that enable accurate event

classification.

Coefficients of an Auto-Regressive Moving Average (ARMA) model are extracted

to form a parametric representation of a seismic event This parametric reprerentation

provides adequate inforration for accurate event classification, while significantly
reducing the minimum size of the neural network The data set is comprised of 75 wave

fbrms, five signal classes, with 2400 samples per seismic trace. Each waveform in this

database is parametrically mpresented by the windowed ARMA feature extraction stated

above These features are presented to the neural network for classification.
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1.0 INTRODUCTION

In recent years, detection and classification of seismic events have been studied

extensively and require nighly trained seismologists to accurately interpret seismic traces
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Figure 1 Time Series Plot of FEBMEi6.W

Figure 1 presents the seismic trace of a typicai marine explosion. There are two

methods which a seismologist might use to classify a seismic event. The easiest event

classification occurs when information such as location and time are known prior to the

event occurrence. Seismologists are then prepared to monitor the event and may easily

vet ify the event type and location The second method does not provide the seismologist

with information prior to the event occurrence Without this a-priori knowledge, the

seismologists job becomes significantly difficult.
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Upon initial examination of a seismic trace, a seismologist would begin the

classification procedure by identifying features of ,he seismic event Typical features of

interest are the arrival and amplude of primary surface waves, secondary waves, and long

waves. After the initial phase identificaL.on, a classification is tentatively associated with

the waveform. The seismologist would attempt to confirm the trace origin and type with

someone at the event location or through published schedules of such events. To improve

the probability of a correct classification, this procedure is usually verified by other

seismologists.

Signal classification of this type is time consuming and is prone to error in

interpreting the signal phases and arrival times. To a great extent, this type of signal

classification is subjective at best. The purpose of this project is to determine the

useffilness of a neural network in seismic event discrimination.

1.1 Project Description

Seismologists use heuristics and intuition in classifying seismic traces. The

heuristics are based upon various features of' the signal. Extraction of these various

tf'atures, as performed by the seismologist, can introduce significant error in signal

discrimination.

Feature extraction and classification error can be reduced by implementing these

functions in an expert system. Heuristics, or rules of thumb, suggest parametric

transformations that could potentially prove useful in developing a neural network based

system. Since each signal in the seismic trace database consists of 2400 points, an

excessive amount of data fbr a neural network, some method of data rtduction must be

I1



included One such method of parametric data ieduction Is in calculating the Auto-

Regressive , loving Average (ARMA) filter coefficients This method will be Used to

determine if the frequency content of the event and how it changes over the event life

provide any useful information in discnmination of seismic events Classification of

seismic signals will be evaluated using supervised Kohonen and Back-propagation neural

networks

1.2 Scope of Activities

Determination of neural network usefulness in classifying seismic traces will

require collecting known data for training and testing, development of ARMA coefficient

calculation, research on back-propagation and Kohonen neural networks, and performance

evaluation of the algorithms. Specifically, the project scope involves.

# Data collection

# ARMA coefficient development

# Signal preprocessing

# Back-propagation research and development

+ Supervised Kohorien research and development

# Neural network training and classification

-t Examination of results.

12



1.3 Report Ovenie%

A brief descnption of the problems in seismic event classification has been

provided along wivh an approximate research plan The remainder of the paper discusses

those topics in detail

Chapter 2 describes the data base used for testing as discussed throughout this

paper. The various tables listed in Appendix A with seismic wave form names, stations

and Julian dates are sufficient references such that anyone accessing the on-line data base

at the Center for Seismic Studies can retrieve the related seismic wave forms. Appendix B

provides seismic monitoring station information.

Chapter 3 offers background information on seismology. The broad classification

of seismic events as used by seismologists is presented along with plots of sample wave

forms. Qualitative assertions and heuristics that are commonly used for seismic event

classification are discussed,

Seismic parametric conversions are covered in Chapter 4 Parametric data is

derived from the sampled wave form and is independent of the identification of various

seismic phases associated with most classification schemes. The parametric data is derived

from ARMA coefficients Appendix C contains the Matlab script file for the ARMA

coefficient extraction

Chapter 5 describes the neural networks utilized in the training and testing of the

seismic parametric data Basic neuron models, activation functions, neural network

structure, network training methods, and differences between back-propagation and

Kohonen neural netwo-ks are discussed at the introductory level

13



Iest results, network training times and performance, and remarks are covered in

Chapter 6 Detailed test results are included in Appendix D

14



2.0 SEISMIC DATABASE

The Center for Seismic Studies (CSS) is an agency funded by the Advanced

Research Projects Agency (ARPA) with the principle objective of providing the research

community easy access to seismic data. Since 1982, CSS has been improving the

teleseismic database procedures and programs of the Lawrence Berkeley Laboratory and

the Discrimination Group at Lincoln I ,aboratories. A more progressive database was

needed to meet the standards of the seismic research community and an interactive method

needed to access the database, In 1987, the version 2.8 database was released adhering to

the Intelligent Array System (IAS), a type of seismic data collection standard. The version

2.8 database also embedded Ansi Standard Query Language (SQL) to interactively access

the seismic database. In 1989, CSS modified the version 2.8 database to handle regional

as wei! as teleseismic events The modified database, Vewsion 3 0, also has a simple

database structure that was less complicated for the interactive use and lessened

maintenance

2.1 Databases at the (enter for Seismic Studies

The Seismic Operations L.Aý` (SOL) is the primary host fur interactive analysis

from the seismic research community SOLa. i- automated to collect and process external

seismic information from various international seismic stations. Using :he processing

power of a SUN workstation, SOL is the heart of the interactions of CSS to the seismic

community The Central Data Repository (CDR), the seismic data archives of CSS, is the

storage facility for SOL The CDR consists of a 600 Gigabyte Tape drive system

dedicated to waveform storage, a 6 Gigabyte database management system, and a 400

15



Gigabyte Optical Jukebe, to store satellite imagery, map graphics, and waveform

segments Figure 2 displays the current configuration at CSS

CDR Ta•. Archive
Waveforms

600 Gigabytes

SOL.CSS.GOV

Marinagmcntl System Opraions¢ Data Acquisition
Parametric Data Oiin

6 Gigabytes Local Area Net VE

CDR File Systems Applied
Wveforms External Collection Neural
Wave fImgs and Processmng Networks

Satite Images Lab

Joo Gigabytes 0

Seismic Stations

Figure 2 CSS Database

Although the Center has many databases consisting of seismic data that has been

collected worldwide, the three major databases are the GSETT, the IMS, and the

EXPLOSION These three databases represent 75% of the entire parametric and

waveform data stored at the Center

The GSETT database was the work of the Ad Hoc' Group of Scientific Exlerts to

Consider /niernalional ('o-()peratyve Measures to Deiecl and Identify Seismic Events,

16



called GSE [6] GSE was formed in 1976 by "n international group of scientisis Cluring

the Conference on Disarmament for the sole purpose of exchanging data useful for

monitoring a limited oi comprehensive nuclear test-ban treaty. Using approximately 50

international seismic stations, 6SE conducted the first international exchange of seismic

data in 1986 during the GSETT-, test. Due to the complexity and size of the eXchange of

parametric and waveform data., the test was only a limited success [6]. Waveform data

were to be availaHe on request, but never exchanged routinely. But with the increasing

technology and the availability of larger computer networks, the second international full-

scale test was conducted irom the 22nd of April 1991 to the 2nd of June 1991. During

these 42 days, over 3,700 seismic events were classified and 85,000 waveform segments

were collected and stored into i.2 Gigabytes of information. Although, the second

international test had some small procedural problems, the test was a seismological

success [6]

The Intelligent Monitoring System (IMS) is a ARPA-sponsored computer system

for automated processing and interpretation of seismic data recorded by arrays and single

stations. It was integrated into CSS computer systems, and has been operational since

1990 The IMS data has been cataloged in the IMS database at CSS, which contains

seismic traces from the two largest seismic stations in Norway, ARCESS and NORESS

ARRAYS.

The EXPLOSION database consists of all unclassified seismic data on nuclear

testing. Another database currently being investigated is the GROUND TRUTH database,

created by Loni Grant at CSS [ 12]. This database is currently being compiled from both

the IMS and GSEIT databases. The GROUND TRUTH database consists of a hand

picked group of seismic events that were verified through means of seismic bulletins,

mining records, and persona! contact. Although the database has been released to the

17



public, the number and type of events are not sufficient for training and testing a neural

network as investigated in this research The database presently consists of 62 waveforms

with sample rates and durations that vary A fixed sample rate and duration was needed

for the development of" ARMA models

2.2 Applications at the Center for Seismic Studies

The heart of database maragement at CSS is the SQL/ORACLE database host

This gives users an interactive method of accessing data. Since SQL querying can be quite

taxing, CSS has created some tools making the collection and examination of data easier

To make the seismic tools accessible from many different operational platforms, CSS

programmed the tools to be used as Xwindows applications

CENi?'RIIEW was the first programmed tool from CSS [2]. Using this tool, one

can directly access the database without using the burdensome SQL queries, and still have

the power to select the data on a variety of constraints With this program, one can

compile data for downloading, review parametric data, and transfer data to the other

seismic tools. The next tool was MAP This tool displayed the location of the seismic

events [epicenters] and the location of the seismic stations that recorded each event

These locations can be displayed on a variety of geographic maps stored at CSS by using

the MAP program The last tool created was GiO!'OOL. This tool gives researchers the

ability to view the waveform in a time series plot, seismograrmi It also has some signal

processing capabilities such as FFT's, filtering, spectrogram, and others

18



2.3 Research Database

The research database, SUBSET'!, is a subset of the GSETT and IMS databases

SUBSET! contains 75 seismic traces composed of 5 event types with 15 waveforms each

The event types selected included both man-made and natural events as follows,

# marine explosions

# quarry blasts

* local

* regional and

* teleseismic

The waveforms were recorded in the Euro-Asian area with a fixed wavelength of

2400 samples and a sample rate of 20 Hertz Each event classification was verified

through the RtPMARKS database table [I]

19



3.0 SEISMIC BACKGROUND

The various aspects of seismology include observational seismology, instrumental

seismology, theoretical seismology, and data analysis of seismic events The primary

focus of applying neural networks to seismology was the analysis and subsequent

classification of seismic data Some introductory terminology as applied to seismic data

analysis will be reviewed

3.1 Seismic Event Classifications

The types of seismic events can be roughly divided into two categories: natural and

man made Natural seismic events include tectoaiic plate movement, volcanic activity,

collapse earthquakes, and oceanic microseisms Man made seismic events can be the

result of a controlled event or that of an induced event Controlled events are typically

explosions and cultural noises while induced events will result from reservoir impounding,

mining, quarry and fluid injection Table I lists the broad categories of natural and man

made seismic events

Seismogram interpretation is dependent on the location of the recording station

and the type of structural model utilized tbr wave propagation in the geological region of

the recording station The structural models and propagation paths have lead

seismologists to three different categories of seismic events, without rogard to the source

of seismic activity These categories are based on distance between the soui-ce epicenter

and the recording station It is common practice to use a spherical mode! of the earth

and express the distance from seismic event focus to the recording station as the angle

20



subtended at the center of the earth between the focus and the station (10 - 11 I km), The

categories thus established are:

Local events <s 10°

Regional events 100 to 200

Teleseimic > 200

"Table 1 Types of Seismic Events

Natural events:
tectonic
volcanic
collapse earthquakes
ocean microseisms

Man Made - Controlled
explosions
cultural noises

Man Made - Induced
reservoir impounding
mining
quarry
fluid injection

Raw seismograms are relatively lengthy Typical sampling rates -iary between 20

1-Hz to 40 lHz with high frequency instruments operating at sampling rates up to I KHz.

The duration of seismic events range from a few minutes for discrete events to day for

seismnic swarms. Seismograms used in this research all result from discrete events

sampled at 20 Hz, with a total of 2400 data points per sampled waveform. Waveforms

were taken from the GSETT database at the Center for Seismic Studies Figure 1, shown

below•, illustrates a typ:cal marine explosion The starn of the seismic event occurs at

21



sample number 600. This starting alignment represents a 30 secord pre-event leader and

is common for all seismic traces used in the GSETT database.

________Febmel!,w

0'5

0 500 1000 1500 2000 2500

Sample Number

Figure 3 Marine Explosion Febmel.w from GSETT Database

In analyzing waveforms such as the one presented in Figure 3, seismologists will

identify different phases of the seismogram based on the time of arrival and the mode of

propagation through the earth.

"There are two basic types of seismic waves, body waves and surface waves [211.

Body waves are radiated by the seismic source and propagate in all directions while

surface waves are concentrated along the surface Body waves can be further subdivided

into compressional (longitudina)) and shear (transversal) waves Compressional waves are

22



often called primery waves or P waves and transversal waves are called secondary or S

waves. P waves tend to travel at a rate 1.7 times that of S waves and are normally the

first portion of the seismic waves to be present in a seismogram.

The P waves are always the first waves to a-rive [21, 34]. The P waves are

surface waves that cause the rock particles to oscillate back and forth in the direction of

propagation and car be compared to the propagation of sound waves. S waves cause

rock motion perpendicular to the motion of P waves and represent a shear wave. Motion

o" S waves through the liquid parts of the earth's interior is not possible since liquids do

not sustain shear forces Two additional waves oftzn associated with a seismic event are

the LQ and LR surface waves. The L stands for long, Q represents Love waves and R is

Rayleigh waves [21], These two waves are often dominate in terms of relative amplitude

Love and Rayleigh waves exhibit velocity dispersion which can be observed as frequency

variant whereas P and S waves tend to be velocity invariant.

The P, S, LQ, and LR, portion of the seismic trace -- referred to as phases.

These phases are further subdivided to give indication of propagation path A Pn or Sn

phase indicates a path that is in the upper crust and is confined to the granitic layer.

Reflection of phases are possible off other layers in the earth A phase reflected off the

Moho layer is referred to as a PrNO or StoP phase 12 IJ Many other combinations are used

as dictated by the seisnic event being evaluated

3.2 Analysis of a Regional Seismic Event

A regional seismic event from the (iSI* i data base is now presented to illustrate

the type of'parametric intlr mation determined by a setismic analyst Data base notation as



assigned by the Center for Seismic Studies is utilized in the seismic event description that

follows. The regional event considered is illustrated in Figure 4 The event is assigned an

origin identification within the GSETT data base of ORID = 36907. This event occurred

on April 28th, 1991 [Julian date of JDATE = 1991117 ], and was determined to be a

regional event. A summary of the seismogram analysis is given in Table 2.

The STASSID label represents a station association identification number assigned

as part of the data base record. The wave train of a single event may be made up of a

number of arrivals and the STASSID allows arrivals believed to have come from a

common event to be joined together in the data base.

The signal amplitude is denoted AMP and represents a zero to peak amplitude of

the earth's displacement in units of rnanometers. The duration of a particular phase is

designated PER and is in units of seconds.

Figure 4 is a regional event with three recorded phases. The magnitude scale was

normalized to +/- with actual displacement magnitudes indicated in Table 2. The first

arrival wave is the Pri wave that traveled through the earth's crust from the epicenter to

the recording station A secondary surface wave, Pg, arrived from a deeper propagation

path followed by a large magnitude LQ or Long-Love wave The first 618 sample points

(approximately 30 seconds) before the arrival of the Pn wave is a period of no seismic

activity This repre.cnts normal background noise and will tend to drift in magnitude

throughout the course of the day due to cultural noises.

"The recording station for this particular wavefbrin was located in Boyern,

Germany It was recorded with a single vertical channel that measures earth displacernent.

"Table 3 gives the station location and instrument calibration factors 'The frequency
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response of the instrument is plotted in Figure 5. The 3 dB bandwidth is 3 Hz. A usable

bandwidth of about 10 Hz can be created with appropriate inverse filtering of the seismic

waveform.

TABLE 2 Seismic Analysis of Regional Event FEBR9.W

ORID 36907
Date April 28, 1991
Julian Date 1991117
Event Time 672777893.300 seconds from Je.nuary 1, 1970.
Classification Regional event
Recording Station Grafenberg Array, Boyern, Germany (GRAI)

Event Location
Latitude 46.220
Longitude 15.440
Depth 8 Kilometers

Phase Information
3 phases recorded at GRAI
Surface Wave Magnitude measured at 2 nanometers
Body wave Magnitude measured at 3.50 nanometers

Phase Summary

Phase Start Start ARID STASSID AMP PER
Time Sample number

Pn 672777957.3 619 492530 368441 41.2 0.65
Pg 672777971.3 886 492531 368442 323.6 0.082
Lg 672778033.8 2136 492532 368443 468.0 0.71
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Table 3 Station Information

GRA I - Grafenberg Array -- Boyern, Germany

Single Station
Channel Type. bz
Channel Id- 51671

Location

Latitude 49.6920
Longitude 11.2220
Depth 0.5 Kilometers From Mean Sea Level

Noise Measurements - Correction Factor

Mean Noise - 6.5 M
Stand Dev -.0.2 nM
Signal to Noise Threshold 1.5

Magnitude

25 4

10 t 4
5i iJ

0A301 0.01 0.1 1 10

Frequency

~magnity ue]

Figure 5 Frequency Response of Grafenberg Array Channel bz
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'.3 Qualitative Assertions and Heuristics

When evaluating a given seismic event, the seismologist must base his reasoning

on a physical model of the earth with respect to the recording station location and the

suspected seismic epicenter. Qualitative assertions, based largely on the identification of

seismic phases, must be made concerning the propagation in a global scale. Table 4 lists

several such qualitative assertions.

Table 4 Qualitative Assertions

I The dominant frequency of the seismic signal is inversely proportional to
the distance of the event.

2. The Pg wave is the first arriving wave for local events, Pn for regional

events P or PKP for teleseismic events.

3. The longer the duration, the greater the magnitude.

4. Presence of a strong S-wave is a distinctive feature of natucal events such
as earthquakes.

5. The absence of S-waves or weakness with respect to P waves indicate an
explosive or artificial seismic source.

6. Similar waveforms are present in seismograms that originate in the same
seismological area.

These assertions may be supplemented by seismologist developed heunistics as

listed in Table 5. Many of the heuristics can be utilized as linguistic descriptors in the

development of a neural network seismic event discriminator.
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Table 5 Seismic Heuristics

1. If the duration of a signal is less than one second, it is most likely noise.

2. If two different signals have dominant signals whose ratio is above 10, then
they probably belong to two different events.

3. If the dominant frequency of the first arrival is above 7 Hz, then the
seismogram belongs to a local event.

4. If the dominant frequency of the first arrival is between 2-7 Hz, then it
belongs to a regional event.

5. If the dominant frequency of the first arrival is below 2 Hz then it belongs
to a teleseismic event.

6. The beginning of a seismic event can be detected using Dixon's test [10].

7. Cultural noise will have dominant frequencies above 1 Hz.

8. Microseismic events will exhibit low frequency broad band noise from less
than 0.01 to 0.5 Hz with periods of 2 to 100 seconds.

9. P wave is normally recorded first.

10. P is normally followed by S, LQ, and LR

11. P waves have linear polarization.

12. LR will have elliptical polarization.

13 Earthquakes produce approximately equal amounts of P and S waves.

14. Explosions produce more P waves than natural events.

15. Earthquakes give anaseismic and kataseismic first onsets.

16. Explosions give anaseismic first onsets everywhere.

17 Earthquakes have relatively deep foci.

18 Explosions have shallow foci

19 Wave train durations are shorter fbr explosions than for earthquakes
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Most of the qualitative assertions and heuristics are based on the various phases of

a waveform as identified by a seismologist. The listed assertions and heuristics offer

several clues which aid in the development of neural network parametric conversions.

The heuristics dealing with dominate frequency raised questions as to the

usefulness of the remaining frequency information. One method of obtaining additional

frequency Information is through generation of the ARMA filter coefficients which will' be

discussed in Chapter
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4.0 ARMA COEFFICIENT MODELIN(G

Several of the heuristics stated in Chapter 3 deal with the dominant frequency of

the first arrival wave of a scismic signal. These heuristics offer information on local,

regional, and teleseismic events on!y, no information is provided for man-made events

such as marine explosions or quarry blasts.

Since the given heuristics are limited to natural events, additional information must

be provided for further discrimination of man-made events. One method of creating this

information is in generating the power spectrum for each seismic event. The power

spectrum may be obtained by processing the time series data through a FFT. However,

the resulting frequency data is as large as the original time data. As tile original time series

contains 2400 points, the data size must be reduced since a 2400 point vector is

excessively large for neural network training and classification.

The power spectrum information may be retained while significantly reducing the

volume of data through calculation and use of the ARMA filter coefficients. The ARIMA

filter is designed from the time series data and can approximate the original frequency

response with a filter of proper order.

As the ARMA model significantly reduces the amount of data, it was decided to

include information pertaining to the frequency variation over time which is accomplished

by windowing the time series data. The process of' windowing divides the data into a

specified number of consecutive segments. Each segment or time slice is usually of equal

size or dutation.
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4.1 ARMA Model Derivation

The time domain design problem can be stated as follows:

Given a sequence g0, it 0, / ... , K, destin a digital system of prescribed
degree such that its itmmlse resptonse hO0 a/)proximates gOn) as well as posshble.

This problem arises as an unusual design task In many cases, g(n) is the sampled output

of a continuous system. When this occurs, the unknown system is to be modeled by a

rational transfer function. The modeling of the system is very important, The modeling

procedure described here was named for Prony who developed it in 1795 for problems in

gas and hydro mechanics [23J.

Let the transfer function H(z) be designed to be

t bk --- --k Ca~n .

H(Z) p

1+ E k"z- k u=0

k=1
(4.1)

where p is an element of the set of natural numbers. Here, the order of the numerator and

denominator are assumed to be equal. First, the number- of given values g(n) is chosen to

be equal to the number of coefficients to be determined At least one recursive system

always exists, the impulse response of which satisfies exactly the condition

h(n) = g(n), n - 0, I, , K (4.2)
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Multiplying Eq. (4. 1) by the denominator, substituting for Eq. (4 2), and comparing the

terms of equal order, you get the matrix equations shown below.

bo g(O) 0 0 0
bi g(1) g(O) 1

al

b -(P - g(p -1) g(1) g(O) 0

b g(p) ... g(2) g(1) g(O)
- --- gpT; g(2) g
0 R- +

&(2p) g(p +l) g(P)
(4.3)

The indicated partition in Eq. (4.3) leads to the pair of matrix equations

b = G1 a (4.4a)

0 = G 2a (4.4b)

where G 1 is a (p+I) x (p+ I) lower triangular toeplitz matrix, and

G 2 = I V : 9 2, ... 9, I Il (4 .4 c )

is a p x (p+l) rectangular matrix+ Equation (4.4a) yields the vector b of the numerator

coefficients for any denominator such that the impulse response has the desired values for

n -O0,1 . p

To calculate the denominator, we write Eq (4 4b) es
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0=g 1 +[g 2 , gp ]

=g +G3a'

where a'= [ a,, a2, ..., ap ]r is the vector of the unknown coefficients.

If G3 has rank p, we obtain

a'= -G.,', * g, . (4.5)

Together with b from Eq. (4.4a) we then have the coefficients of H(z).

4.2 ARMA Coefficient Extraction

Once the method fcr creating the ARMA coefficients has been determined, the

next step is to implement the feature extraction. The Prony method as described above

handles ARMiA modeling through matrix manipulation. At this point, the MatlabTM

software package was chosen for feature extraction. Matlab is a software package which

was written for the processing of mathematical functions especially in its handling of

matrices The Matlab script file used to extract the ARMA c-)efficients is included in

Appendix C Direct implementation of the Prony method can be accomplished using the

proiiv command [251 The command fbrmat is

I b , a I prony( h, nb, na)

where b - nunierator coefficients in desc:.-nding powers ofz

a denominator coefficients in descending powers of z
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h = desired impulse response

nb = numerator order

na = denominator order.

Afier calculating the filter coefficients, the results are stored with the exception of

the constant I of the denominator. This constant 1, the a, term, was left out of the

training data since it would be the same for each signal and provided no significant

information to the neural networks for training or classification.

The next step in creating a reduced parametric data set is in determining the

number of windows and the filter order required to optimize neural network training and

classification. By varying both the number of windows and filter order between 8 and 24,

a series of 25 data sets were obtained. Each data set was divided into a 45/30 split, 45

signals for training and 30 signals for classification, then placed into a back-propagation

neural network for training and classification. Network training was limited to 1000

epochs before event classification.

Table 6 contains the window size and filter order testing. The data of highest

importance is the classification percentag.: From Table 6, it can be determined that using

16 windows and a lburth order ARMA model will provide the best training and

discrimination results This modeling will reduce the size of each signal from 2400 poitns

to 144 points
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Table 6 Test Data for Determining Window Size and Filter Order

Filter Order

2 3 4 5 6

8 57/10 80/6.7 80/10 80/15 83/16

Number 12 78/20 87/23 84/30 86/26 86/23
ofnow 16 96/13 93/22 93/35 94/30 90/26Windows

20 90/12 94/18 92/20 93/22 93/22

24 94/10 95/12 95/13 94/15 95/10

Note Table format is a / b where a is the training % and
b is the classification %

A comparison of the frequency plots of the time series and ARMA model

demonstrates the information contained in the reduced parametric data. Figure 6 gives the

time series frequency plots for Febmel6.W over the chosen four windows. The resulting

ARMA filter frequency response plots are contained in Figure 7. A comparison of the

respective windows shows the ARMA model to contain the same frequency information

as the time series. The resulting ARMA plots are significantly smoother than the time

series plots This is due to the time series plots being created from the actual frequency

information contained in the signal while the ARMA plots show the true frequency

response curve. The plots shown in Figure 6 and Figure 7 are normalized to a magnitude

of one (1) to eliminate any amplitude in'ormation. Elimination of amplitude information

can be justified as the original project intention was to determine the usefulness of

frequency infbrmation other than the firequency heuristic of the first arrival wave which

was described in C'hapter 3.
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Figure 6 Windowed Frequency Response of Febmel6.W
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Figure 7 Frequency Response of the ARMA Model of FEBME 16 W
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5.0 NEURAL NETWORK IMPLEMENTATION

Currently, there are several types of neural network algorithms available for use.

These networks are developed based upon various learning methods or processes

including synaptic learning, linear associator, adaptive resonance, autoassociation, and

feature detection. A few of the more popular neural network types are back-propagation,

ART, Hopfield, neocognitron, Kohonen, and ADALINE

For this research, two Deural networks were chosen, back-propagation and

supervised Kohonen. These networks were used du.' to their ease in implementation,

learning processes, and for their differences in classification procedures.

Prior to discussing the usage and results of the networks, a description of the basic

neural network model is presented.

5.! Neural Network Model

Pattern recognitioni techniques have been used since the early 1950's when the field

of neural networks was introduced [22]. One early type of neural network was the

perceptron [37]. Simply stated, a perceptron is a node which takes a set of inputs,

multiplies them by a weighted value, then sums the iurnis. The result is a single weighted

value related to the input terms which can be expressed mathematically as

NET - iWi i2W2 + 4 iW,, (5 1 1)

A diagram ofa perceptron is shown in Figure 8
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One problem with a perceptron is that the output is unbounded This can cause

overflow conditions in digital systems and saturation in analog systems. In creating a

bounded perceptron output, the neuron was developed. A neuron provides the basic

building block of a neural network [37] (see Figure 9).

W22 NET

in ]!'n

Figure 8 Perceptron Model

Activation

Function 
OT

Figure 9 Neuron Model

The neuron takes the perceptron output, processes it through an activation function and

produces a bounded output value as shown

OUT = F ( NET) (51.2)
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Severa' types of activation, or logistic, functions exist; one of the most common being the

sigmoidal activation function. The sigmoid function is given by:

1
OUT = F(NET) = 1 NET

l+e -E

(5.1.3)

and the, first derivati ve becomes

bOUT
F (NET) - = OUT.(1 - OUT)

6.NEr
(5.1.4)

A plot of the activation function output is shown in Figure 10. The sigmoid is desirable

since it is continuous and has a simple derivative which is also continuous.

0.8-

0.6
N e u r o n 

_ ___

Output 0.4-

0.2

0
-10 -5 0 5 10

Perceptron Output

Figure 10 Sigmoidal Activation Function
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The logistic fuinction compresses the perceptron output range such that the output

lie-, between 0 and 1. It also introduces a nonlinearity which allows for better prediction

or classification in multi-aver networks [37]. The sigmoidal function provides an

automatic gain control thereby eliminating network saturation. It should be noted that any

non-linear function may be used providing that it is differentiable over the entire range

[37].

Figure II illustrates a typical neural network consisting of an input layer, hidden

layers, and an output layer. Each network layer may contain a different number of

neurons. The input layer Peurons receive data from the outside world without making any

modifications. The hidden layer neurons provide intermediate calculations for internal

feature maps. Hidden neurons are named as such because their inputs and outputs cannot

be seen. The output layer neurons display the network results which contain the

prediction or classification information. Interpretation of the output neurons depends

upon the initial definition of the network.

121

* //

Input Hidden Output
Layer Layer Layer

Figure I I Basic Neural Network Model

After creating a base neural network, the next step is to decide how the network is

to operate and implement a training algorithm Network operation and training is diffierent
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for back-propagation and supervised Kohonen networks. These networks and their

training is dtscribed below

5.2 Back-Propagation Neural Networks

The back-propagation neural network gets its name from the training method.

Back-propagation training is accomplished in two stages, a forward pass and a reverse

pass. In the first stage, or forward pass, an input vector is applied to the network and an

output vector created. The second stage, or reverse pass, calculates an error vector and

propagates backwards through the network to adjust the intermediate wveighlt vectors so as

to minimize the erroh. Initially, the network weights are set to small random numbers to

prevent the network from saturating with large numbers The basic training steps are as

follows:

Forward Pass

I. Select input information

2. Calculated output of network k

Reverse Pass

3. Calculate the error between the network and target

4. Adjust weights to minimize the error

5 Repeat steps 1-4 until error is acceptable.

Once training is complete, the network can be used for recognition or pi-ediction,

depending upon the type of training data.
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In a forward pass, the output of each layer is the input to the next layer. This can

be mathematically described as

O = F (XW) (5.2.1)

where X = input vector

0 = output vector for given layer

W Matrix of weights between neurons

F() = activation function as described in Eq. (5.1.3).

The final output vector is calculated by stepping between tne individual layers.

The output from the input layer is

O, = X (5.2.2)

The hidden layer output vector is

Oh = F(OiW,) (5.2.3)

and the final output vector, Y, becomes

Y = F(OhWh) = F[ F(OiW,)Wh] (5.2.4)

Now that an output vector has been calculated, the task of adjusting the weights

begins. Back-propagation uses a modified version of the Delta rule to adjust the weights

as follows
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8 = O(1 .Oi)(TARGET-O0) (5.2.5)

This 5 is then multiplied by the source neuron for the weight being calculated, This

product is in turn multiplied by the learning rate coefficient rq (typically 0.01 to 1.0) and

this result is now added to the weight. This process in mathematical matrix form is as

follows:

AWpq,k = Tl*6 q.k*Opj (5.2.6)

Wpq.k(N+1 ) - Wp.k(N) + AWpq.k (5.2.7)

where Wpq~k(n) = value of weight from neuron p in the hidden layer to neuron q in the

output layer at step N (before adjustment). k indicates that the weight is

associated with its destination layer.

Wpqk(N+ I) = value of weight @ step N+ I (after adjustment)

bq.k = the value of 6 for neuron q in output layer k

Opj = the value of OUT for neuron p in hidden layer j

Note: p & q refer to a specific neuron, j & k refer to a specific layer.

Back-propagation trains the hidden layers by propagating the output error back

through the network layer by layer. The equations previously discussed are still valid, but

they must be modified due to a lack of a TARGET vector. This modification is

accomplished by first calculating the 6 for the output layer, which is used to calculate 6 for

all the previous layers by propagating it back through all the weights. This is represented

mathematically as

Spi : Opd I-[-p,,)(Y_ 4 q,k4 * pq~k) (5,2.81
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where

E 6 q,k*Wpq.k (5.2.9)

is the sum of the weighted errors. Using this we can now adjust the weights using the

previously discussed equations. Using vector notation:

Dj = DkWkt # [OJ # (I - Oj)] (5.2.10)

where Dk set of 6 at output layer

Wk = set of weights for output layer

Dj= 6 vector for hidden layer

# =a component by component multiplication of the two vectors.

Oj= the output layer for layer j and

I - matrix where all components are 1.

5.3 Supervised Kohonen Neural Network

In the early 1970's, Tuevo Kohonen published a paper proposing a model for an

associative memory, the linear associator [22]. The linear associator uses neurons with

linear transfer functions rather than non-linear activation functions such as the sigmoid.

The neurons respond to input changes by changing the firing rate of the outputs. This

network will map similar inputs to similar outputs, leading automatically to the ability to

generalize [22].
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With the back-propagation neural network, the number of output layer neurons

depended upon the number of classes in the data set. Each output neuron was assigned to

a specific class and the interior network weights were adjusted so that for a given input

vector, the output vector had a one (I) for the correct class and zero (0) for the other

classes. The Kohonen neural network has a slightly different structure which is

demonstrated in Figure 12.

0 0 0 InputLayer

. 70 Output Layer

Figure 12 Kohonen Neural Network /rchitecture

A Kohonen network, shown in Figure 12, consists of two layers of neurons, an

input layer and an output layer. This structure does not contain the hidden layer neurons

of the back-propagation networks. The number of input layer neurons is determined by

the input data vector length whereas the number of output layer neurons is chosen based

upon the number of classes and the users intuition as to the number of neurons required to

properly represent each particu!ar class
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Kohonen networks contain two types of interconnections. The first set of

connections is between the input and output neurons where each input neuron is

connected to each output neuron. The second set of connections allows interaction

between the output neurons themselves. These output neuron interactions determine

which neuron will fire and make the classification.

One advantage of Kohonen networks is the ability to self organize feature maps.

During training, the output neurons are a.djusted so as to cluster around groups or features

of the data presented to the network. In a back-propagation network, ail neuron weights

are adjusted such that the neuron representing the correct class approaches a value of one

(I) and the incorrect class neuron values are reduced to zero (0). In simpler terms, for

each back-propagation network adjustment, every neuron is updated for error

minimization. The Kohonen network is adjusted differently. For each given input only the

winning neuion is adjusted. As the winning neuron is the only one adjusted, the concept

of competition is introduced into the output layer. Determination of the winning neuron is

accomplished through closest output neuron to the input data with respect to any given

metric. One of the most common methods of choosing a winning neuron uses the

Euclidean distance, whereby the winning neuron would have the smallest distance from

the input vector.

At this point, it should be noted that Kohonen neurons are not handled in the same

manner as back-propagation neurons. For input layer neurons, there are no differences

between networks as these neurons are single valued and contain one point of the input

vector. From Figure 12, it is shown that Kohonen networks do not have hidden layer

neurons, however there is a significant number of' output neurons as compared t9 the

back-propagation network. The Kohonen output neurons are treated as vectors with the

same number of components as the input vector. Since the lenigths of the input vector and
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the output neurons are equal, choosing the distance between them is a simple method of

determining the winning output.

Suppose that the training data consists of n vectors with M components each.

Then the Euclidean distance is calculated by

m

dli] = Z (l]-WiI]

(5.3.1)

where i = 1,2,...,n

x[i] = components of the iMiput vector

W[i][] :- elements of the weight matrix

d[i] = Euclidean distance for the ith input vector

and the neuron associated with the smallest d[i] value is the winning neuron. This neuron

will adjusted during training or determine the class when discriminating signals. When

calculating this distance, it is not necessary to include the square toot since the comparison

is related to magnitude only.

The training of Kohonen networks differs from that of back-propagation nets. In a

back-propagation network, an error vector is used to adjust the weight values for each

neuron, whereas Kohonen networks typically adjust only the neuron that w'ins.

Adjustment of the winning neuron uses the delta ruie and a learning rate in the form

w_new[i][jj = w old[i]~j] + X ( x[j] - wli][j] ) (5.3.2)
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where ?, is the learning rate. The learning rate typically stars at 0.2 and decreases to 0

over the training period by

Xnew = X,_old - ( Lstart / N) (5.3.3)

where X•_start is the initial learning rate and N is the number of iterations for learning.

Kohonen learning is much simpler than back-propagation learning, but there are

two possible disadvantages in its use. First, Kohonen networks are slow to lcam the input

data. For each input vector applied, only one output neuron has its weights adjusted.

Since the weights of one neuron are affected, the other neurons are not adjusted toward or

away from their respective classes. The second problem is again related to the restriction

of adjusting neurons independently. If the clusters of input data are close together and the

Kohonen neurons are significantly far away, most of the neurons will never be adjusted

toward the data clusters. This can be easily demonstrated through a 2-space example.

Figure 13 contains two data clusters represented by Di and D2 and Kohonen neurons K.

From this plot, it can be seen that reqardless of which input is used for training, the neuron

K' will win and be adiusted toward the appiopriate cluster. When the next input is

applied, this same neuron will win again. As a i-sult, the K' neuron will always win, the

remaining neurons will never move toward either cluster, and the network will never

distinguish between classes. This particular problem can be overcome by asing supervised

Kohonen learning.
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Figure 13 2-Snace Vector Mapping

In supervised Kohonen networks each output neuron is assigned to a particular

class. By knowing the class of the neuron and the input class, it can be determined

whether the winning output neuron should be adjusted towards or away from the input

vector. Using Eq. 5.3.2 will move the neuron towards the input vector while a slight

modification,

w_new[i][j] =- wold[i][j] X ( x[j] - w[i]fjj), (5.3.4)

will increase the distance between the neuron ard input. Controlling the direction of

adjustment will force neurons toward their assigned class. However, this does not address

the problem of adjusting all neurons toward their respective vactor spaces
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To insure that all neurons are adjusted toward their proper vector spaces, it is

necessary to count the number of firings for each neuron. By monitoring neuron firings

over a user defined number of training epochs, it can be determined which neurons are not

being properly adjusted. After the specified number of training epochs, any neuron that

has riot fired, or fired few times, will be adjusted by the procedure described above.

By forcing every output neuron to be adjusted toward its assigned class, the

grouping of Kohonen neurons will better represent the data clustering. As a result, the

supervised Kohonen network will have good pattern recognition and noise tolerance.

5.4 Software Implementation

Currently, there are many commercial software packages that implement various

types of neural networks. For this research, the neural networks implemented are included

in the SeisNet neural network package which was created for use by the Applied Neural

Networks Lab at West Virginia Institute of Technology [36]. This program provides a

significant amout of user control over the network implementation Several of the user

determined options are as follows

total number of records

number of training records

number of testing records

number of training epochs

number of network layers

number of neuions pei layer

learning rate
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termination error.

Seisnet generates a report which includes the network parameters, as determined

by the user, training rt-alts, and the classification results. A typical network report is

included in Appendix D.
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6.0 TESTING AND ANALYSIS

The detailed results of the testing for this project are included in Appendix D with

a summary in Table 7. The first page of Appendix D is a typical neural network report file

which contains information on network training parameters, training results, and

classification results in the following order. The first section of the report gives the

number of training records, testing records, network size, momentum, learning rate, and

the computer on which the network was trained. Section two states the training threshold,

training time per epoch, and training error values. Section three shows the training results

in tabular form Finally, sectior four lists the classification results in tabular form.

Since the GROUND TRUTH database at CSS was in the process of being created

at the time of this testing, the number of known good signals for testing was limited to 75.

Due to variations in seismic events and event types, a database of this size is limited in its

ability to provide a sufficient base for proper neural network training. In order to

overcome the small number of signals available, the testing was limited to five classes as

follows

class I quarry blast

class 2 local earthquake

class 3 teleseismic earthquake

class 4 regional earthquake

class 5 marine explosion

It was also decided to split the database such that one part of the signals were used

for training and the remaining signals used for testing
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The back-propagation network implemented consisted of 144 input neurons, 70

hidden neurons, and 5 output neurons where each output neuron represents one of the five

event classes.

Ideally, for any given seismic event, the output vector would consist of onz neuron

of L, value equal to I and four neurons with a value of zero. In reality this never happens,

so a method must be implemented to chose between the five output neurons in case of

contention. To be considered the winning output, the neuron must meet the following

two conditions,

1. a value greater than 0.7 and

2. a value of 0.2 greater than the other four neurons

The supervised Kohonen network consists of 144 input neurons and 360 output

neurons. This configuration uses 72 neurons to represent the vector space for each class.

Signal discrimination in supervised Kohonen networks do not require the post-

processing of back-propagation networks, This is due to each output neuron having a

designated class. Since only one neuron may fire for any given input, signal discrimination

is determined by the class designation of the winning neuron

6.1 Test Results

A statistical average for training and testing can be obtained using the database

splitting rnethod mentioned above. Betbre splitting the database the signal order was

randomized to prevent the network from learning tl2, I':attern in which they were presented
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to the network. To build a statistical base, 20 randomized data sets were generated

These randomized sets were then divided into two groups. The first group was split into

30 signals for training and 45 for testing while the split for the second group were

reversed, 45 for training and 30 fbr testing. The complete results from this procedure are

shown in Appendix D where the tests denoted by SPI tG SPIC are the 30/45 split and

SPI I to SP20 are the 45/30 split.

Back-propagation Network

Class
1 2 3 4 5

30/45 Split 2.11 9.33 33.01 8.18 18.10

45 / 30 Split 1 0.00 10.27 36.98 1.43 32.26

Supervised Kohonan Network

Class

1 2 3 4_ 5_

30 / 45 Split 53,38 25.85 47.58 37.04 49.21

45 / 30 Split 57.58 26.94 22.40 1 27.50

Table 7 Network Classification Results (%)

Table 7 presents the average classification results per class. These results were

obtained after 10000 training iterations for the back-propagatioii network and 2500

iterations for the supervised Kohonen network. The back-propagation network, based

upon the information in fable 7, does not prove to be useful in discrimination of seismic

signals using the ARMA coetficient model However, the supervised Koloneii network
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yields significantly higher recognition rates. This is most likely due to the noise tolerance

of Kohonen networks,

6.2 Training Time

Training of the neural networks varies between different computers as would be

expected. The average training times of the back-propagation and Kohonen networks for

the different database splits is shown in Table 8.

Back-propagation Network

IBM PS70 Gateway Flex
386 - DX 486 - DX2 486- DX
20 MWz 50 Mhz 50 Mhz

30/45 Split 27.45 4.80 3.39

45 / 30 Split 41.02 7.43 5.05

Supervised Kohonan Network

IBM PS70 Gateway Flex
386 - DX 486- DX2 486 - DX
20 MHz 50 Mhz 50 Mhz

30 / 45 Split 23.69 3.48 2.66

45 /30 Split 36.11 t.78 3.81

Table 8 Average Network Training I imes (sec / epoch)
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6.3 Summary

Overall, the results of this study demonstrate that the ARMA coefficient model is

insufficient as a stand alone seismic signal discriminator. The ciassification results of the

back-propaga!icn network are poor at best. Back-propagation does acheive a recognition

rate of 3 6 .9 8% for teleseismic events but, this is not a promising number. The supervised

Kohonen network, however, has recognition rates of 67.83% for teleseismic events and

57.58% for quarry blasts.

This information suggests that a supervised Kohonan network using ARMA

modeling in conjunction with other preprocessing techniques could produce an acceptable

seismic signal discriminator.
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APPENDIX A Data Base Wave Form Files from CSS

FNAME STA CHAN JDATE

Febme 1.w ARU bz 1991119
Febmei6.w ESLA sz 1991114
Febmel 7.w ESLA sz 1991114
Febmel 8.w ESLA sz 1991135
Febmel9,w ESLA sz 1991135
Febme43 w GAR bz 1990051
Febme45,w GAR bz 1991124
Febme47.w GAR bz 1991139
Febme48. w GAR bz 1991141
Febme49.w GAR bz 1991146
Febme55.w KIV bz 1991133
Febme56.w KIV bz 1991146
Febme65.w OBN bz 1991139
Febme66.w OBN bz 1991144
Febme67. w OBN bz 1991146

FebrOw GRA1 bz 1990331
Febr,. w GRA I bz 1991117
Febrl 5.w GRAI bz 1991127
Febr21.w GRAI bz 1991136
Febr46.w WRA sz 1990331
Febr52.w WRA cb 1991114
Febr58.w WRA cb 1991119
Febr66. w WRA cb 1991121
Febr72.w WRA cb 1991129
Febr86.w WRA cb 1991141
Febr99.w WRA cb 1991143
Febr103,w WRA cb 1991147
Febr 109. w WRA cb 1991151
Febr112.w WRA cb 1991152
Febr115.w WRA cb 1991153

NOTE: All signals are 2400 samples at 20.00 samples per second.
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APPENDIX A Data Base Wave Form Files from CSS

FNAME STA CHAN JDATE

Febta25. w (RAI bz 1991132
Febta52.w WRA sz 1990123
Febta69 w WRA sz 1990334
Febta78. w WRA sz 1990335
Febta8 l.w WRA sz 1990335
Febta86 w WRA sz 1990051
Febta97 w WRA sz 1990065
Febta150,w WRA cb 1991114
Febta177.w WRA cb 1991118
Febta229. w WRA cb 1991121
Febta309.w WRA cb 1991125
Febta3 17. w WRA cb 1991125
Febta408,w WRA cb 1991133
Febta5l3,w WRA cb 1991137
Febta542 w WRA cb 1991138

Febla0.w BJT sz 1991147
Febla5.w GAR bz 1991115
Febla7 w GAR bz 1991117
Feblab. w GAR bz 1991! IQ
Febla9.w GAR bz 1991145
Febla 11. w GRA I bz 1991112
Febla 13. w GRAI bz 199 i h 0
Febla 16. w GRA I bz 991122
Febla 19. w GRAI bz 1991149
Febla20. w HFS sz 1991135
Fcblh'26. w HFS cb 1991 !35
Febla73.w WRA cb 1991137
Febla75.w WRA cb 1991143
Febla76. w WRA cb 1991143
Febla82w WRA cb 1991146

NOTE. All signals are 240(0 samples at 20.00 samplcs per second
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APPENDIX A Data Base Wave Form Files from CSS

FNAME STA CHAN JDATE

Febqb0.w ASAR cb 1991123
Febqb i2W CTA bz 1991123
Febqb20.w CTA bz 1991141
Febqb33, w KAF sz 199033 I
Febqb45.w KAF sz 1991114
Febqb93.w KAF sz 1991133
Febqb 100 w KAF sz 1991135
Febqb 114.w KAF sz 1991140
FebqbI17.w KAF sz 1991140
Febqb118.w KAF sz 1991140
Febqb122.w KAF sz 1991142
Febqb147.w KAF sz 1991150
Febqb154.w KAF sz 1991154
Febqb158.w STK bz 1991121
Febqbl80.w WRA cb 1991141

NOTE: Ail signals arc 2400 samples at 20.(X) samples per second.
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APPENDIX B GSETT-Subsetl Station Names and Locations

I ISTA STATION NAME LATITUDE LONGITUDE

ARU ARTI - SVERDLOVSK. OBLAST 56.4(XX) 58.6(X0

SASAR ALICE SPRINGS ARRAY - NORTH TERRITORY, AUSTRALIA 23.7040 133.9620

ýBJT BAIJIATUAN - BAIJIATUAN, CHINA 40.0403 116.1750

C'CTA CHARTERS TOWERS - QUEENSLAND. AUSTRALIA 20.0880 146.2540

SESLA SONSECA ARRAY STATION - SPAIN 39.67(X) -3.96(X)

GAP, GARM - GARM. USSR 39.(XX) 70.30(X)

JGRAI GRAFENBERG ARRAY - BOYERN, GERMANY 49.6920 11.2220

HFS HAGFORS ARPAY - SWEDEN 60.1335 13.6836

ý'KAF KANGASNIEMI - FINLAND 62.1127 26.3062

JKIV KISLOVODSK - WESTERN CAUCASUS USSR 43.9500 42.6833

,:OBN OBNINSK - OBNINSK, USSR 55, 1167 36.5667

i JSTK STEPHENS CREEK - NEW SOUTH WALES, AUSTRALIA 31.8820 141.5920

ýWRA WARRAMUNGA ARRAY - NORTH TERRITORY, AUSTRALIA -19.7657 134.3891
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APPENDIX C ARMA Coefficient Extraction Routine

%-

% File: ARMA.M (Matlab Script Fiie)

% Author: John R. Martin
% Date: 01-26-1993
%/ -----------------------------------------------------------------------------------------

% Purpose: This program calculates the auto-regressive-moving average
% coefficients for an equivalent approximation of the time series.
% The results are stored with the numerator coefficients then

% denominator coefficients per window for the given number of
% windows.

% Changes. 08-18-93 JRM Store data on individual basis not as full matrix.

clear-
dccclc;
clf,

% Variable List

wave dir =- 'c:\data\ssl'; % dir foi *.w files
outfile = 'c:\data\arma.dat', % output filenamc
inde:,, filename ='file', % name of index file
no class = 5; % number of classes
slice = 16, % number of time slices
filt ord -40 %order of ARMA filter
auto_ len I, % automatic samples/windox,
no samp = 0; % manual sampleslwindow

% Ignored if auto len - I
graphics I, %0- no graphics

% 1 - create plots

norm -- 2, % 0 - no Normalization
% I - normalize input data
% 2 - normalize output data

win type 0,/ % 0 - Rectangular
% I - Hamming

- ilanning



APPENDIX C ARMA Coefficient Extraction Routine

%/ ...............................

% External Variables

0% --------------------------------

%0 These Variables should be in the file pointed to by index filename

% Filc [] The name of the waveforms
% class = [3 The class of the waveforms in the same order as

% the file name listing
% wave-length Length in samples of the waveforms
% should be the same per waveform.
% file number Number of waveforms

% Begin Executable Code

% Get File Index

disp([ '3);
disp (['Auto-Regressive Moving Average Extraction Routinm]);
disp([' ']);
disp (['Loading Waveform Index from ',wavedir]);

eval (index filename); %Loads File Prefix FILE.M
clear index filename,

% -0-.... ------------------- . ....

%4 Create the Output Data File

FID -% -I is default for failure to open file
while it) -1

FID - open(out "le,'at',n), % Append ASCII format to IBM
end

data out z..ros(.',(slice/4)*(filt orda+filt oid-t !)+no class),

% VWavet'f ir loop
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APPENDIX C ARMA Coefficient Extraction Routine

% Remove blanks from the filename
for tile no = Lfile number

clf.
namesize = 0,
for character =- 1:8

if strcmp(File(fileno, character),' ') 0
namesize = namesize + I;

end
end

% Get name from the filelist
fname = File(file no, I .namesize);

% Diplays which file is currently be worked on
disp([' Evaluating: ',fname]);

% Retreives the datafile from the waveform__directory

eval (['load ',wavedir,'\',fname,'WTI

eval(['data=',fname,';']), % assign to working variable
eval(['clear ',fname]); % free variable from memory

if auto-len == I
nosamp = wavelength / slice;

end

% Calculate the window smoothing
if'file no I

for n = I no samp
if win type == 0 % Rectangular

window(n) = I
end
if win type == I % Hamming

window(n) = 0.54 - 0.46*cos((2*pi*n)/nosanlp),
end
if wintype == 2 % Hanning

window(n) =: 0.50 - 0 50*cos((2*pi*n)/no samp),
end

end
end
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APPENDIX C ARNIA Coefficient Extraction Routine

% Normalize the input data
if norm =- I

data = data / max(abs(data)),
end %if

% Window loop

for win -I slice/4
disp(win)
start = (win- 1) * no_samp + 1
stop = win * no_samp;
win data = data( ],start:stop);
if windata(l) -= 0

win data(i)= .01,
end

% Get ARMA filter coefficients

[b,a] = prony(win data, filt ord, liltord);

% store data

start - (win- J )'(fiit t o+filtord+ )+ 1
stop = win*(filt ord+filt .ord+1),
data out(l,start:stop) = [b a(1,2:fit ord+l f)],

- ----------------

% compare frequency response of ffi and arma

freq = ft(windata);
trap - size(freq),
f = !'req( 1 tnm pC(2)/2 )/ma%(abs( fieq)),
[h,n -- freqz(b,a,trnp(2)/2),
h -- h/max(abs(h)),

•. 8



APPENDIX (C ARMA Coefficient Extraction Routine

%0 ----------------------------------

% Plot Graphics
/0 --------------------------------------

if graphics . 1
clf;
plot( 1 :tmp(2)/2,abs(f), 1 :tmp(2)/2,abs(h));

title(['FFT / ARMA Response Plot']);
xlabel(['Frequency']);
ylabel(['Magnitude']);

end
end% window loop

% Normalize the output data

if norm == 2
dataout(I,:) = dataout( I,:)/max(abs(dataout(1,:))),

end

0/ --------------------------

% Class identifier
%------------------------------------

if class(file_no) == 1, classifier = [1.0 000.0 0.0 0.01];
elseif class(fileno) == 2, classifier = [0.0 1.0 0.0 0.0 0,01;
elseifclass(file_no) .=. 3, classifier = [G.0 0.0 1 0 0.0 0.0],
elseif class(fileno) = 4, classifier [0.0 0.0 0.0 1.0 0 0],
elseif'class(fileno) == 5, classifier = [0.9 0.0 0.0 0.0 1 0],
end

% Save data in ASCII format

for count = 1:63,
fprintf(FID, ' %12.9f, data_out( 1,count));

end
fprintRF1D, %3. 1f %3. If %3 If %3. 1f %3.1f',n', classifier),

end% wavefbrm loop

",c.ose(FID))

oo(



APPENDIX D Neural Network Data

'rTypical Neural Network ClassiFication Report

Nctwork: Back Propagation Run Dateý 7/ 8/1993

Input Data
Waveform File Name ..................... SPIA1 PRM
Number of Data Records ................. 75
Number of Training, Rccords ........... 30
Number of Testing Records ............. 45
Number of Training Epochs ............. !0000
Number of Network Layers ............ 3
Number of Neurons Per Layer ......... 144 70 5
Learning Rate Delta ....................... 0.2000

M om entum ................................... C .1000
Term ination Error .......................... OOO E+O0
Saving W eight in ...................... -.... SP I Al BW T
Com puter ....................................... 20 M Hz IBM M odel 70

Training Summary
Training Threshold .......................... 0.7000
Trainin,- Threshold Difference ...... 0.2000
Average Time Per Epoch.(sec) ......... 28.10
A ve. Error 7...................... 7.187E-05
M ax. Error ..................... 1.69!E-04
M in. Error ................... 8.139E-06

Out•put Class I Percent
0 1 2 3 4 5 I Coirect

1 1 0/6 6/6 0/6 0/6 0/6 0/6 1 100.00
Input 2 1 0/4 0/4 4/4 0/4 6/4 0/4 I 100.00
Class 3 I 0;5 0/5 0/5 5/5 0/5 0/5 1 100.00

4 0/9 0/9 0/9 0/9 9/9 o/9 100.00
5 0/6 0/6 0/6 0/6 0/6 6/6 1 100.00

Classification Surnmary
Classification Threshold ................ 0.7000
Classification Threshold Difference 0.2000

Output Class I Percent
0 1 2 3 4 5 1 Correct

1 5/9 U/ 2/9 o,/) 1/9 0/9 1 11.11
Input 2 I 5/11 I/11 0/11 0/1 3/11 2/11 000
Class 3 I 5/'(0 1/10 0/10 2/10 ./1! 0/1 0 20.00)

4 I 4/6 0/6 1/6 0/6 1/6 0/6 16.67
5 3/9 1/9 3/9 0/9 1/9 0/9 0.00
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APPENDIX D Neural Network Data

Back-propagation Neural Network Training Data

Input Output Class
Class 1 i 2 3 4 5 Total % CORR

SPI I 0 6 0 0 ( 0 6 100.00
2 0 0 4 0 0 ( 4 100.00
3 0 0 0 5 0 0 5 IO0(X)
4 0 0 0 0 9 0 9 100.00
5 0 ) 0 0 6 6 100.00

SP2 1 0 3 0 0 0 0 3 100.00
2 0 0 6 0 0 0 6 100.00
3 0 0 0 6 0 0 6 100.00
4 0 0 0 0 7 0 7 100.00
5 0 0 0 0 0 8 8 100.00

SP3 1 0 6 0 0 0 0 6 100.00
2 1 0 5 0 0 ( 6 83.33
3 0 0 0 5 0 0 5 100.(X)
4 0 0 0 0 4 0 4 100,00
5 0 0 0 0 0 9 9 100.00

SP4 i 0 5 0 ) 0 0 5 10W.00
2 0 0 7 0 0 ) 7 100.()
3 2 0 0 2 0 0 4 50.(X)
4 0 0 1 0 7 0 7 100.00
5 ) 0 0 0 0 7 7 100.00

SP5 1 0 4 0 0 ) 0 4 100.00
2 0 0 8 0 0 0 8 100.(X)
3 1 0 0 6 0 0 7 85.71
4 0 0 0 ( 4 0 4 100.00
5 0 0 0 0 0 7 7 100(X),

SP6 1 0 5 0 0 0 0 5 10W.0)
2 0 0 6 0 0 0 6 1 (X).
3 0 0 0 6 0 0 6 1 0.(X)
4 0 0 0 0 6 0 6 10.(X)
5 0 0 0 0 0 7 7 1 (X).0

SP7 1 0 4 0 0 0 0 4 100(X)
2 0 ) 8 0 0 0 8 1M(X)
3 I C) 0 2 0 ) 3 66.67
4 0 ) 0 ) 8 0 8 10000
5 0) () C) 0 0 7 7 I (X)00
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APPENDIX D Neural Network Data

Back-propagation Neural Network Training Data

Input Output Class
Class 0 1 2 3 4 5 Total % CORR

SP8 1 0 3 0 0 0 0. 3 100.0
2 0 0 7 0 0 1 7 100.00
3 I 0 5 0 0 6 83.33
4 0 0 0 0 6 0 6 100.00
5 0 0 0 0 0 8 8 100.00

SP9 1 0 5 0 0 0 0 5 100.00
2 0 0 7 0 0 0 7 100.00
3 2 0 0 3 0 0 5 60.00
4 1 0 0 0 4 0 5 80.00
5 0 0 0 0 0 8 8 100.00

SPIO I 0 8 0 0 0 0 8 1.00
2 0 0 5 0 0 0 5 100.00
3 0 0 0 7 0 0 7 100.(X)
4 0 0 0 0 7 0 7 100.00
5 0 0 0 0 0 3 3 100.00

SPI I 1 0 9 0 0 0 0 9 100.00
2 0 0 Ii 0 0 0 I1 100.00
3 2 0 0 8 0 0 10 80.00
4 0 0 0 0 6 0 6 100.00
5 0 0 0 0 0 9 9 100.00

SPI2 1 0 12 0 0 0 0 12 100.00
2 0 0 9 0 0 0 9 100.00
3 3 0 0 6 0 0 9 66.67
4 1 0 0 0 7 0 8 8750
5 0 0 0 0 0 7 7 10W.00

SPI3 1 8 0 0 0 0 9 88.89
2 0 0 9 0 1 W()O0
3 0 0 0 1(0 0 0 4k If'
4 0 0 0 0 11 0 II IO.AX)
5 0 0 0 0 0 6 6 100.00

SPI4 I 0 10 0 0 0 0 10 )0
2 0 0 8 0 0 0 8 10( 00
I Ci 0 0 II 0 0 1I 100.00
4 0 0 0 0 8 0 8 IO,()
5 (8 ( 0 0 0 8 I( 0.(00
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APPENDIX D Neural Network Data

Back-propagation Neural Network Training Data

Input Output Class
Class 0 I 2 3 4 5 Total % CORR

SPI1 I 0 11 (0 0 0 0 I1 1 (X).
2 I 0 6 ( 0 0 7 85.71
3 I 0 ( 8 0 8 i (H.WX)
4 2 0 0 0 9 10 II 81.82
5 0 0 0 0 0 8 8 10.(X)

SPI6 1 1 9 0 0 0 0 10 90.00
2 0 0 9 0 0 0 9 100.00
3 2 0 0 7 0 0 9 77.78
4 0 0 0 0 9 0 9 100.00
5 0 0 ) 0 0 8 8 1M.00

SP17 I 0 I 0 () 1 ) i 100.00
2 1 0 6 0 0 0 7 85.71
3 2 0 0 10 0 0 12 83.33
4 0 00 0 7 0 7 100.00
5 0 0 0 0 0 8 8 100,00

SPI8 1 1 11 0 0 0 0 12 91.67
2 0 0 8 0 0 0 8 100.00
3 0 0 0 9 0 0 9 100.00
4 0 0 0 0 9 0 9 1 M. 00
5 0 0 0 0 0 7 7 100.(0

SP19 1 0 10 0 0 0 0 10 100 00
2 0 0 8 0 0 0 8 100.00
3 1 0 0 9 0 0 10 90.(K)
4 0 0 0 0 10 0 10 10W.00
5 0 0 0 0 0 7 7 1 (X).

SP20 I 0 7 0 0 0 0 7 00.0
2 0 0 10 0 0 0 I0 100.()
3 3 0 0 5 0 0 8 ')2.50
4 0 0 0 0 8 0 8 1.00
5 0 0 0 0 0 12 12 I(X).00
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APPENDIX D Neural Network Data

Back-propagation Neural Network Classification Data

Input Output Class
CI'ss 0 1 2 3 4 5 Total % CORR

SPI 1 5 1 2 0 (0 9 11.11
2 5 I 0 3 2 1I 0.0(0
3 5 1 0 2 2 0 10 20,0)0
4 4 0 1 0 1 0 6 16.67
5 3 I 3 0 2 0 9 0.00

SP2 1 4 0 I 2 5 0 12 0.00
2 5 0 0 3 1 0 9 0.00
3 4 0 0 5 0 0 9 55.56
4 4 1 2 I 0 0 8 0.00
5 0 0 1 0 0 0 7 0.00

SP3 1 7 0 1 0 1 0 9 0.000
2 6 0 0 0 2 1 9 0. 00
3 6 0 0 2 2 0 10 20.00
4 7 0 0 0 2 2 I1 18.18
5 4 0 0 0 0 2 6 33.33

SP4 1 5 1 0 1 2 1 10 10.00
2 4 0 0 0 0 4 8 0.00
3 5 0 2 3 i 0 11 27.27
4 5 1 2 0 0 0 8 0.00
5 3 1 0 0 0 4 F 50.00

SP5 1 6 0 0 1 3 1 11 0.00
2 6 0 0 0 0 1 7 0.00
3 5 0 0 3 0 0 8 77,50
4 6 0 2 2 1 0 11 9.09
5 3 0 2 0 I 2 8 25.00

SP6 1 4 0 0 1 4 i 10 0.0,0
2 5 1 i 1 0 1 9 1111
3 4 0 2 3 0 0 9 33.33
4 3 0 2 2 0 2 9 0.00
5 2 1) 2 0 I 3 8 37.50

SP7 1 4 4 0 3 11 0()00
2 1 0 4 0 1 1 7 57.14
3 8 0 2 I 0 I 12 8,13
4 2 0 3 0 1 I 7 14,29
5 4 0 3 0 0 1 8 1250
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APPENDIX D Neural Network Data

Back-propagation Neural Network Classification Data

Input Output Class
Class ( I 2 3 4 5 Total % CORR

SP8 I 5 0 3 1 2 1 12 0.00
2 3 0 1 3 1 0 8 12.50
3 3 0 1 5 0 0 9 55.56
4 7 0 1 0 1 0 9 11.11
5 3 0 4 0 0 0 7 0.00

SP9 1 6 0 2 0 1 1 10 O.(X)
2 6 0 1 0 0 1 8 12.50
3 6 0 3 1 0 0 10 10.00
4 6 0 4 0 0 0 I) 0.00
5 5 0 1 0 0 1 7 14.29

SPIO i 4 ) 0 0 3 ) 7 0.00
2 6 2 ) 1 1 0 I0 0,(x)
3 1 i 0 5 1 C 8 62.50
4 4 2 0 1 I 0 8 12.50
5 6 1 I 1 2 1 12 8.33

SPI 1 1 4 ) I ) 1 0 6 0.00
2 1 0 i ) 0 2 4 25.00
3 4 0 0 1 0 0 5 20.(X)
4 5 C 4 0 0 0 9 0.0)
5 2 C 4 ) 0 t) 6 0.00

SPi2 1 1 C I 0 I 0 3 O.(X)
2 3 1 0 I C 2 6 0.00
3 1 0 2 3 C o 6 50(X)
4 3 1 2 1 1 0 7 14.29
5 1 ) 1 0 I 5 8 62.50

SPI3 1 3 ) I ) 2 0 6 O).()
2 1 1 1 2 0 1 6 16,67
3 5 0 0 0 0 0 5 0.00
4 3 1 0 I 0 0 4 00()
5 3 0 I 1 1 3 9 33 33

SPi4 I 1 0 0 2 1 I 5 0(X)
2 2 3 0 2 ( (I 7 (H)
I 0 ) 0 1 I 0 4 75 (0
4 6 1) I W C 0 7 O.(X)
5 3 0 2 ' C) 2 7 28.57
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APPENDIX D Neural Network Data

Back-propagation Neurai Network Classification Data

Input Output Class
Class 0 1 2 3 4 5 Total % CORR

SPI5 i 2 0 0 2 0 0 4 0.00
2 4 0 1 2 0 1 8 12.50
3 4 0 0 3 0 0 7 42.86
4 4 0 0 0 0 0 4 0.00
5 5 0 0 0 0 2 7 28.57

SPI6 1 3 0 0 1 1 0 5 0.00
2 3 0 0 2 0 1 6 0.00
3 2 0 3 0 0 6 50.00
4 3 1 1 1 0 0 6 0.00
5 4 0 V 0 3 7 42.86

SPI7 1 3 0 0 0 i 0 4 0.00
2 6 0 0 2 0 0 8 0.00
3 2 0 0 1 0 0 3 33.33
4 6 0 1 1 0 0 8 0.00
5 0 2 2 0 2 1 7 14.29

SPI8 I 0 0 0 I 2 0 3 0.00
2 4 0) ) 0 I 2 7 0.00
3 2 0 0 3 I 0 6 5000
4 1 3 1 1 0 0 6 0.00
5 i 1 2 0 4 0 8 0.00

SPI9 I 1 0 2 0 2 0 5 0.00
2 3 0 2 1 0 1 7 28.57
3 4 1 0 I 0 0 5 20.(x)
4 5 0 0 0 0 0 5 0.00
5 3 0 2 1 1 I 8 12,50

SP20 I 5 1 I 0 0 2 8 0.00
2 0 0 1 2 2 2 5 200()
3 3 0 2 2 0 C) 7 2857
4 3 I . 0 0 0 7 0.00

S0 0 " l(), 00()

76



APPENDIX D Neural Network Data

Supervised Kohoran Neural Network Train~ig Data

Input Output Class
Class 0 1 2 3 4 5 Total % CORR

SPI 1 0 6 0 0 0 0 6 100.00
2 0 0 4 0 0 0 4 100.00
3 0 0 0 5 0 0 5 100.00
4 0 0 0 0 9 0 9 10000
5 0 0 0 0 0 6 6 100.00

SP2 1 0 3 0 0 0 0 3 100.00
2 0 0 6 0 0 0 6 100.00
3 a 0 0 6 0 0 6 100.00
4 0 0 0 0 7 0 7 100.00
$ 0 0 0 0 0 8 8 100.00

SP3 1 0 6 0 0 0 0 6 100.00
2 0 0 6 0 0 0 6 100.00
3 0 0 0 5 0 0 5 100. (X)
4 0 0 0 0 4 0 4 100.00
5 0 0 0 0 0 9 9 100. (X)

SP4 1 0 5 0 0 0 0 5 1 W.00
2 0 0 7 0 0 0 7 100.00
3 0 0 0 4 0 0 4 1M(X)
4 0 0 0 0 7 0 7 10.00
5 0 0 0 0 0 7 7 10 0.0X)

SP5 1 0 4 0 0 0 0 4 10(X) (
2 0 0 8 0 0 0 8 100.00
3 0 0 0 7 0 0 7 1 (X)
4 0 1) 0 0 4 0 4 100.00
5 V 0 0 0 0 7 7 1.(X).

SP6 1 (1 5 0 5 ( 0 5 I(X)
2 0 0 6 0 U ( 6 10.(X)
3 0 0 U 6 0 0 6 1.(X)M
4 0 1) 0 U 6 0 6 1(K) (M)
5 0 0 0 0 0 7 7 1 W(X)

SP I 0) 4 () U 0 ( 4 1 )(X )
2 H U N o o U 8 () WX)

4 ( 1 U U N ( N 1(X)()
S () U ( U 7 7 1W(X)
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APPENDIX D Neural Network Data

Supervised Kohonan Neural Network Training Data

Input Output Class
Class O 1 2 3 4 5 Total % CORR

SP8 I 0 3 0 0 0 0 3 100.00
2 0 0 7 0 0 0 7 100.00
3 0 0 0 6 0 0 6 10000
4 0 0 0 0 6 0 6 10000
5 0 0 0 0 0 8 8 100.00

SP9 I 0 5 0 0 0 0 5 100.00
2 0 0 7 0 0 0 7 100.00
3 0 0 0 5 0 0 5 100.(X)
4 0 0 d 0 0 5 1 0. 00
5 0 0 0 0 0 8 8 100.00

SPIO 1 0 8 0 0 0 0 8 100.00
2 0 0 5 0 0 0 5 100,00
3 0 0 0 7 0 0 7 100.00

4 0 0 0 0 7 0 7 10.0(X)
5 0 0 0 0 0 3 3 100()0

SPI I 1 0 9 0 0 0 0 9 1(W.00
2 0 0 11 0 0 0 (I I0)(0)
3 0 U 0 10 0 0 I)0 I(X).()
4 0 0 0 0 6 0 6 100.0()
5 0 (1 0 C C 9 1 W(1.(M)

SPt2 I ( 12 1 0 0 0 12 1W.(X)
2 U ) 9 0 o Cll( ),(X)
3 o C) 0 9 0 U 9 1W(.).
4 () o () (M 8 0 8 1OO(K)
5 o (0 0 0 7 7 1()W W

SPI 3 1 0 9 0 0 0 U 9 I0(X)
2 1 C) 9 0 0 0 9 100.010
3 010 100. (H)
4 1 C) C) ( ! C, I I 1 00.C)

5 C) C) ) 0 0) 0oC) ,)0

SPI4 1 0 0) ) to IOC) WK)
2 CO Ci C C) ) C0 8 I()10(8)
1) C) C) I0I 1 I 100 (H)

4 0 C) 0 C) 8 C) )3)1))
S I) C) C) C) 1) K K (91 ) (C)
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APPENDIX D Neural Network Data

Supervised Kohonan Neural Network Training Data

Input Output Class
Class 0 I 2 3 4 5 Total % CORR

SP15 1 0 10 0 0 1 0 11 90.0l
2 0 0 7 0 0 0 7 I00.00
3 0 0 0 8 0 0 8 100.00
4 0 0 0 0 i1 0 1 1 00,00
5 0 0 0 0 0 8 8 !00.60

SPI6 1 0 10 0 0 0 0 10 100.00
2 0 0 9 0 0 0 9 10.(X)
3 0 0 0 9 0 0 9 100.()
4 0 0 0 0 9 0 9 100.00
5 0 0 0 0 0 8 8 100.00

SPI7 1 0 10 t 0 1 0 11 90.91
2 () 0 7 0 0 0 7 100.00
3 o 0 0 12 0 0 12 100.00
4 0 0 1 0 7 0 7 1 W.(4)
5 0 0 0 0 0 8 8 1(W).M

SPI8 1 0 12 o o o 0 12 1W.00
2 ) 0 8 0 o 0 8 100.0()
3 ( 0 o 9 0 0 9 1A(X)(
4 0 0 0 o 9 o 9 1(W.0M
5 0 0 0 0 0 7 7 1W(.)M

SPI9 1 0 1 0 0 o o 10 1(0. W
2 ( 0 8 0 0 0 8 100.0W
3 0 () o 9 I It) 90,00
4 o o) o o IO 1 IO 1W.00
5 () () ) o () 7 7 1(W).(0)

SP2O I 7 o o o ) 7 1(W.( )
2 1 U I() 0 W .ItH 1( )
I ) Ii ) 8 o U 8 I( W)
4 o U ( 0 8 (4 8 1(x) ()
5 (U ) o) (• () 12 12 1( W (8)

7()



APPENDIX D Neural Network Data

Supervised Kohonan Neural Network Classification Data

Input Output Class
Class 1 1 2 3 4 5 Total % CORR

SPI 1 0 8 0 0 i 0 9 88.89
2 0 7 I o 1 2 11 9.09
3 0 7 0 1 2 0 lO 10.00
4 0 4 I 0 0 1 6 0.00
5 0 2 4 0 2 I 9 II.II

SP2 I 0 7 0 I 3 1 12 58..33
2 0 0 0 1 4 4 9 0.00
3 0 0 0 6 3 0 9 66.67
4 0 0 1 0 6 I 8 75.00
5 0 1 0 0 2 4 7 57.14

SP3 1 0 5 3 0 0 1 9 55.56
2 0 4 3 2 0 0 9 33.33
3 0 I 2 3 4 0 10 30.00
4 0 0 4 1 1 5 11 9.09
5 (C 2 3 0 0 1 6 1667

SP4 I 0 7 0 I 2 0 10 70.(X)
2 0 0 2 1 0 5 8 25.00
3 0 0 3 8 0 0 II 72.73
4 0 0 2 1 5 o 8 62.50
5 0 I 0 0 3 4 8 50.00

SP5 1 0 2 3 1 1 4 II 18.18
2 0 e 3 2 I I 7 42.86
3 0 o 3 5 8 0 H 6250
4 0 6 0 0 5 II 0.00
5 0 0 3 0 0 5 8 62,50

SP6 I ( 0 2 2 60.00
2 0 2 1 2 3 9 11.11
"3 0 2 1; 5 1 I 9 55 56
4 o 0 I 0 2 6 9 22 22
5 () I 1 C) I 5 8 02 50

SP7 1 0 4 4 ) 2 1 II 36.06
2 0 1) 4 ( I 2 7 57 14
3 0 () 9 I 2 () 12 8 33
4 4) (4 2 (4 4 I 7 57 14
5 0 I 2 ') I 4 x 5000)
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APPENDIX D Neural Network Data

Supervised Kohonan Neural Network Classification Data

Input Output Class
Class 0 1 2 3 4 5 Total % CORR

SP8 1 0 3 2 I 3 3 12 25.(X)
2 0 0 0 4 2 2 8 0.00
3 0 0 0 9 0 0 9 100.00
4 0 0 0 1 4 4 9 44,44
5 1 0 1 0 1 5 7 71.43

SP9 1 0 5 1 0 0 4 10 50.00
2 0 0 4 0 0 4 8 50.00
3 0 0 8 2 0 0 10 20.00
4 0 0 1 1 0 8 10 0.00
5 0 I 0 0 0 6 7 85.71

SPIO 1 0 5 0 0 2 0 7 71.43
2 0 1 3 I 5 0 1 30.00
3 0 ) 2 4 2 0 8 50.00
4 0 ( 0 0 8 0 8 10.(X)
5 0 2 3 0 4 3 12 25.00

SPI I I 0 3 0 I I 1 6 50.00
2 0 0 0 1 1 2 4 0.00
3 0 0 0 5 0 0 5 100.00
4 0 0 5 0 4 0 9 44.44

5 0 4 0 0 2 6 33.33

SP12 1 0 1 0 0 1 i 3 33.33
2 0 1 1 3 0 1 6 16.67
3 0 0 2 4 0 0 6 66.67
4 0 2 4 1 0 0 7 .(X)
5 0 I 3 0 1 3 8 37,50

SP3 0 5 0 0 1 0 83.33
2 0 0 1 1 3 1 6 16.67
"3 0 0 0 5 0 0 5 1W.00
4 0 0 0 2 2 0 4 50.(X)
5 (1 1 I 0 7 0 9 (,000

SPI4 I 0 3 I 0 I 0 5 0.0
2 0 0 3 1 0 7 42.86
S 0 0 1 3 0) 0 4 75.00

4 0 I 4 ( 2 0 7 28.57
5 0 ( 7 0 0 7 0()



APPENDIX D Neural Network Data

Supervised Kohonai Neural Network Classification Data

Input Outpui Cklss
Class 0 1 2 3 4 5 Total % CORR

SPIS 0 2 1 1 0 4 50(X)
2 0 3 5 0 0 0 8 62.50
3 0 2 2 0 0 7 28.57
4 () 2 2 0 ( o 4 .(X)
5 0 3 1 0 0 3 7 42.86

SPi6 I 0 4 1 1 0 0 5 80.00
2 0 0 0 4 0 2 6 0.00
3 0 0 0 6 0 0 6 100.00
4 0 0 0 2 4 0 6 66.67
5 0 0 1 1 4 2 7 28.57

SPI7 1 ) 2 I 0 i 0 4 50.00
2 0 2 2 2 0 2 8 25.00
3 0 0 0 3 0 0 3 100.00
4 I 5 0 I 8 M(X)
5 0 3 1 0 1 2 7 28.57

SPI8 1 0 2 I 0 0 0 3 66.67
2 0 3 I 0 0 3 7 14.29
3 1) I 4 I 0 0 6 16.67
4 0 2 4 0 0 0 6 0(X)
5 5 I 0 0 2 8 2500

SPI9 I 0 2 I 0 I 5 4000
2 0 1 5 1 (1 0 7 71 43
3 ) 0 3 1 I 5 20.00
4 0 I 3 I 0 5 20,00
5 0 2 3 0 2 I 8 12.50

SP20 I (I 0 I I 1 8 t2 50
2 1) () I 2 (1 2 5 20.(H)
3 ) () 2 5 t) 0 7 71 44
4 1) I 2 2 l I 7 14 29
5 )) U (1 0 2 3 66 67
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